PROFILE
In all industrial applications where temperatures, pressures or other physical parameters have to be displayed, the Digital 280 can be used. The universal input circuit allows to connect thermocouples, resistance thermometers and all other sensors with voltage or current output. The feature „one version for all input sources“, (no plug-in modules or configuration jumpers) fulfils the prerequisite for the reduction of instrument stock and as result the reduction of costs.

The input signal can be scaled, monitored for limits or for sensor break. Two relays signal the limit condition. Additionally the displayed value can be accessed to the analog output as a 0 or 4 to 20 mA current signal.

In industrial applications with distributed measuring points, on-site display and for central data acquisition the Digital 280 with RS 422 interface is the ideal instrument.

Alternatively the Digital 380 can be used, which has intrinsically safe inputs, mathematical functions and supports the intelligent channel selector / scanner unit.

DESCRIPTION
The Digital 280 is suitable for connecting thermocouples, resistance thermometers, potentiometric transducers and current/voltage signals. Thermocouples can be measured with internal or external cold junction compensation. Resistive thermometers and resistors can be connected in 3- or 4-wire technique.

Sensor monitoring
Resistance thermometers, thermocouples, and resistance transducers are always monitored for breakage.

Input signal correction
Input signal correction is used to match sensor and indicator for tolerance-compensated readings and fulfils the calibration standard of ISO 9001.

Two different corrective methods are available:
- correction „on the process“ within the limits of the selected span or
- selection of values from the calibration table (scaling).
(calibration device 701/702 on request)

Subsequent corrections during operation are possible by means of the front keys. The curve can be adjusted for offset and gain.

Limit signalling
- One minimum and maximum alarm for each relay (adjustable in engineering units)

Hysteresis
Separately configurable in engineering units for each relay.

Discriminator (response delay)
Configurable from 0...9999 s. All alarm signals shorter than the selected delay are ignored.

Signalling
- two red LEDs in front panel (lights up on alarm)
- via relay output (NO or NC operation)

Alarm latch (Software option)
The alarm condition is latched until it is reset by front key or digital input (d1).

Filter
The input has a 1st-order mathematical filter. It is adjustable for time constant and bandwidth.

The bandwidth is the tolerance above and below the process value, in which the filter is active. Changes of the process value larger than the adjusted bandwidth are not filtered and displayed directly.
Fig. 1 Noisy input signal

Fig. 2 Smooth display and analog output

TECHNICAL DATA

INPUT

Resolution of approx. 20,000 steps referred to full span.

Measuring sequence: 200 ms

Thermocouples

Linearization: built in

Display in °C or °F

Input resistance: > 1MΩ

Influence of source resistance: approx. 0.5 mV/Ω

Cold junction compensation internal or external with adjustable reference temperature 0...60 °C

Break monitoring via sensor current 0.5 μA

Resistance thermometer

Pt100 DIN/IEC with built in linearization

Display in °C or °F

Connection

three or four-wire

Lead resistance: ≤ 30 Ω per wire

Input resistance: > 1 MΩ

Sensor monitoring: for break

Resistance & Potentiometric Transducer

Connection

Transducer: three-wire

Resistance: three or four-wire

Lead resistance: ≤ 30 Ω per wire

Input resistance: > 1 MΩ

Sensor monitoring: for break

Table 1 Thermocouple measurement

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Type</th>
<th>Input range (°C)</th>
<th>Display error</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-CuNi</td>
<td>(DIN) L</td>
<td>–100...900</td>
<td>±3 K ± 1 digit</td>
<td>< 3 μV</td>
</tr>
<tr>
<td>Fe-CuNi</td>
<td>J</td>
<td>–100...1200</td>
<td>±3 K ± 1 digit</td>
<td>< 3 μV</td>
</tr>
<tr>
<td>NiCr-Ni</td>
<td>K</td>
<td>–100...1370</td>
<td>±3 K ± 1 digit</td>
<td>< 3 μV</td>
</tr>
<tr>
<td>PtRh-Pt</td>
<td>10 % S</td>
<td>0...1760</td>
<td>±3 K ± 1 digit</td>
<td>< 1 μV</td>
</tr>
<tr>
<td>PtRh-Pt</td>
<td>13 % R</td>
<td>0...1760</td>
<td>±3 K ± 1 digit</td>
<td>< 1 μV</td>
</tr>
<tr>
<td>PtRh-Pt</td>
<td>6 % B</td>
<td>0...1820</td>
<td>±3 K ± 1 digit</td>
<td>< 1 μV</td>
</tr>
<tr>
<td>Cu-CuNi</td>
<td></td>
<td>–100...400</td>
<td>±3 K ± 1 digit</td>
<td>< 3 μV</td>
</tr>
<tr>
<td>NiCr/Ni</td>
<td>J</td>
<td>–100...1300</td>
<td>±3 K ± 1 digit</td>
<td>< 3 μV</td>
</tr>
<tr>
<td>NiCr-CuNi</td>
<td>E</td>
<td>–100...1000</td>
<td>±3 K ± 1 digit</td>
<td>< 3 μV</td>
</tr>
<tr>
<td>W5%Re-W26%Re</td>
<td></td>
<td>0...2315</td>
<td>±3 K ± 1 digit</td>
<td>< 3 μV</td>
</tr>
</tbody>
</table>

* in the range 400...1820 °C

Table 2 Direct voltage and current

<table>
<thead>
<tr>
<th>Sensor span (V)</th>
<th>Input resistance (MΩ)</th>
<th>Display error</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>–3...23 mV**</td>
<td>> 1 MΩ</td>
<td>±0,05 % ± 1 digit</td>
<td>< 1 μV</td>
</tr>
<tr>
<td>–11...89 mV**</td>
<td>> 1 MΩ</td>
<td>±0,05 % ± 1 digit</td>
<td>< 3 μV</td>
</tr>
<tr>
<td>0...160 mV**</td>
<td>> 1 MΩ</td>
<td>±0,05 % ± 1 digit</td>
<td>< 6 μV</td>
</tr>
<tr>
<td>–0,6...4,4 V</td>
<td>approx. 100 kΩ</td>
<td>±0,05 % ± 1 digit</td>
<td>< 200 μV</td>
</tr>
<tr>
<td>–2...13 V</td>
<td>approx. 100 kΩ</td>
<td>±1,2 μV</td>
<td>< 600 μV</td>
</tr>
<tr>
<td>0...30 V</td>
<td>approx. 100 kΩ</td>
<td>±1,2 μV</td>
<td>< 600 μV</td>
</tr>
<tr>
<td>–1...7,3 mA</td>
<td>18 Ω</td>
<td>±0,3 μA</td>
<td>< 1 μA</td>
</tr>
<tr>
<td>–3...22 mA</td>
<td>18 Ω</td>
<td>±1 μA</td>
<td>< 2 μA</td>
</tr>
</tbody>
</table>

** Break monitoring via sensor current of 0.5 μA

Table 3 Resistive measurement

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Sensor current</th>
<th>Input range (V)</th>
<th>Display error</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100 DIN</td>
<td>0.4 mA</td>
<td>–200...650</td>
<td>±1 K ± 1 Digit</td>
<td>< 15 mΩ</td>
</tr>
<tr>
<td>Resistance</td>
<td>0.4 mA</td>
<td>0...400</td>
<td>±0.05 % ± 1 Digit</td>
<td>< 15 mΩ</td>
</tr>
<tr>
<td>Resistance</td>
<td>0.1 mA</td>
<td>0...1500</td>
<td>–</td>
<td>< 55 mΩ</td>
</tr>
</tbody>
</table>

Table 3 Electrical connections

1. Option, relay of alarm 1/2
2. Option, analog output current 0/4...20 mA
3. RTC-3-wire and potentiometric transducer: link at the terminals
4. Transmitter power supply only with order no. 9407-300-xx0x1 and 9407-300-xx1x1
5. Interface (only with order no. 9407-300-xx2x1)

Direct Voltage and Direct Current

See Table 3

Control Inputs

Control input for potential free contact or logic signal 0/5V

- **d2 (Remote/local)**
 - Contact opened or 5V: local operation
 - Contact closed or 0V: remote operation (writing via interface is allowed) resp. parameter level locked.

- **d1 (Software option)**
 - Contact opened or 5V: no reset
 - Contact closed or 0V: reset alarm (Con4)

Permissible Interference at Input

(to DIN IEC 770 6.2.4)

- Common mode suppression: negligible
- Series mode: no effects up to 450 mV_{rms} for TC (Type S)
 - 1 V_{rms} for mV (0...50mV)
 - 750 mV_{rms} for Pt100 (0...100°C)
 - 10 V_{rms} for DC 0...4V/0...5mA

Transmitter Power Supply

- Only with versions without interface and without analog output!
- Voltage U_T > 13V for 20mA, not short circuit proof

<table>
<thead>
<tr>
<th>OUTPUTS (optional)</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog output (optional)</td>
<td>4-digit LED in red or green, 14mm high</td>
</tr>
<tr>
<td>0...20 mA or 4...20 mA freely scalable</td>
<td>2 red LEDs: input circuit monitor or limit signaler activated</td>
</tr>
<tr>
<td>Signal range: 0...22 mA</td>
<td>Yellow LED: remote (operation via interface allowed, no local operation)</td>
</tr>
<tr>
<td>Load: ≤ 500 Ω</td>
<td></td>
</tr>
<tr>
<td>Resolution: ≤ 0,1 mA (8 bit)</td>
<td></td>
</tr>
</tbody>
</table>

Sensor Monitoring

Output action selectable upscale or downscale

Relay Outputs (optional)

- Reaction time for 0 to 90%: 200ms
- 1 or 2 relays with potential free switchover contact
- Contact rating:
 - Max. 250 VAC; 3A; 500VA; resistive load min. 10 V DC; 0,05A; 1VA
- Normally opened or normally closed

Operating Mode

- Selectable for input circuit monitoring and/or limit signalling

Power Supply

Two versions:
- 115/230VAC, –15...+10% or 19...30VDC or 24V AC, –15%, +10%
- Power consumption: approx. 5 VA (W)
- Frequency: 48...62 Hz

Behavior at Mains Failure

- No loss of calibration, parameter and configuration data

Display

- 4-digit LED in red or green, 14mm high
- 2 red LEDs: input circuit monitor or limit signaler activated
- Yellow LED: remote (operation via interface allowed, no local operation)

Operation

- Configuration, parameter setting, and input signal correction are menu-guided via three front-panel keys.
- Locking of complete operation
- Locking of parameter level

Serial Interface (optional)

- Built in RS422/485 interface provides reading of process data and reading/writing of parameter and configuration data.
- Galvanically isolated
- Transmission rate 2400...19200 bits/s
- Address 00...99
- Drivers for WIZCON, FIX DEMACS and InTouch are available.

Fig. 5 Parameter setting and configuration

![Configuration Diagram](image-url)
COMPUTING FUNCTIONS

- 1st-order filter with adjustable operating range (bandwidth)
- Input signal correction

Software options

Alarm latch
The alarm condition is latched until it is reset by front key or digital input (d1). Alarm condition is latched even after mains failure!

ENVIRONMENTAL CONDITIONS

Temperature limits
For specified accuracy: 0...55°C
For operation: 0...+60°C
For storage: −20...+70°C
Influence of internal cold junction compensation: < 0,5 K/10K
Relative humidity: < 90% RH, no condensation

Shock and vibration
DIN IEC 68-2-6/Fc
DIN IEC 68-2-29/Eb

ELECTROMAGNETIC COMPATIBILITY

Complies with EN 50081-1 and EN 50082-2 for unlimited use within rural and industrial areas

Interference on input and output leads
EN 61000-4-4, Level 4: 2 kV CM1) (Burst EN 61000-4-5, Level 3: 2kV CM1) and 1kV DM1)

High-frequency interference
EN 61000-4-3, Level 3: 10V/m
No effect with 27...1000 MHz2)

Interference on leads
EN 61000-4-6: 10 Vrms
No effect with 0,15...80 MHz2)

Electrostatic discharge
EN 61000-4-2, Level 3
No effect with 8 kV air discharge; 4 kV contact discharge (via coupling plate)

Low-frequency magnetic field
400 A/m, 50 Hz

GENERAL

Housing
Plug-in module, inserted from front
Material Makrolon 9415 flame-retardant, self-extinguishing. Flammability class UL 94VO

Protection mode
DIN VDE 0470 / EN 60529
Front: IP 52
Housing: IP 20
Terminals: IP 00

Safety characteristics
According to EN 61010-1:
Overvoltage category III
Pollution degree 2
Operating voltage range 300 V
Protective class I

CE-marking
According to European Directives for „Electromagnetic compatibility” and „Electrical equipment use within specified voltage limits” (see Safety Characteristics)

Electrical connections
Flat-pin connectors to DIN 46 244 for 1x6,3 mm or 2 x 2,8 mm

Mounting method
Panel-mounting with two fixing clamps at the sides

Weight
approx. 0,4 kg

Accessories
- Operating manual 9499 040 47801
- 1 sheet of adhesive labels with engineering units
- 2 mounting clamps
- seal (front/panel)

Your local representative:

PMA
Prozeß- und Maschinen-Automation GmbH
P.O. Box 31 02 29
D-34058 Kassel
Tel.: +49-561-5051403
Fax: +49-561-5051661
e-mail: export@pma-online.de
Internet: http://www.pma-online.de

Printed in Germany – Edition 9905 · Data subject to alteration without notice · 9498 737 29713